Fermi Dirac distribution Semiconductor

July 1, 2019
Fermi-Dirac distribution

Electrons are an example of a type of particle called a fermion. Other fermions include protons and neutrons. In addition to their charge and mass, electrons have another fundamental property called spin. A particle with spin behaves as though it has some intrinsic angular momentum. This causes each electron to have a small magnetic dipole. The spin quantum number is the projection along an arbitrary axis (usually referred to in textbooks as the z-axis) of the spin of a particle expressed in units of h. Electrons have spin ½, which can be aligned in two possible ways, usually referred to as 'spin up' or 'spin down'.

All fermions have half-integer spin. A particle that has integer spin is called a boson. Photons, which have spin 1, are examples of bosons. A consequence of the half-integer spin of fermions is that this imposes a constraint on the behaviour of a system containing more then one fermion.

This constraint is the Pauli exclusion principle, which states that no two fermions can have the exact same set of quantum numbers. It is for this reason that only two electrons can occupy each electron energy level – one electron can have spin up and the other can have spin down, so that they have different spin quantum numbers, even though the electrons have the same energy.

These constraints on the behaviour of a system of many fermions can be treated statistically. The result is that electrons will be distributed into the available energy levels according to the Fermi Dirac Distribution:

\[f\left( \varepsilon \right) = \frac{1}{{\exp \left( {\left( {E - \mu } \right)/{k_{\rm{B}}}T} \right) + 1}}\]

where (ε) is the occupation probability of a state of energy ε, kB is Boltzmann's constant, μ (the Greek letter mu) is the chemical potential, and is the temperature in Kelvin.

The distribution describes the occupation probability for a quantum state of energy E at a temperature T. If the energies of the available electron states and the degeneracy of the states (the number of electron energy states that have the same energy) are both known, this distribution can be used to calculate thermodynamic properties of systems of electrons.

Source: www.doitpoms.ac.uk
RESOURCES
RELATED VIDEO
Fermi Dirac distribution - a simple derivation: Part 1
Fermi Dirac distribution - a simple derivation: Part 1
Fermi-Dirac Distribution Function - Pinky and the Brain
Fermi-Dirac Distribution Function - Pinky and the Brain
Electronic Devices: Fermi Dirac distribution
Electronic Devices: Fermi Dirac distribution
RELATED FACTS
Share this Post